function [ Elements, varargout ] = ply_read ( Path, Str ) %% PLY_READ reads a PLY 3D data file. % % [DATA,COMMENTS] = PLY_READ(FILENAME) reads a version 1.0 PLY file % FILENAME and returns a structure DATA. The fields in this structure % are defined by the PLY header; each element type is a field and each % element property is a subfield. If the file contains any comments, % they are returned in a cell string array COMMENTS. % % [TRI,PTS] = PLY_READ(FILENAME,'tri') or % [TRI,PTS,DATA,COMMENTS] = PLY_READ(FILENAME,'tri') converts vertex % and face data into triangular connectivity and vertex arrays. The % mesh can then be displayed using the TRISURF command. % % Note: This function is slow for large mesh files (+50K faces), % especially when reading data with list type properties. % % Example: % [Tri,Pts] = PLY_READ('cow.ply','tri'); % trisurf(Tri,Pts(:,1),Pts(:,2),Pts(:,3)); % colormap(gray); axis equal; % % Discussion: % % The original version of this program had a mistake that meant it % did not properly triangulate files whose faces were not already triangular. % This has been corrected (JVB, 25 February 2007). % % Glenn Ramsey pointed out and corrected a problem that occurred % with an uninitialized value of Type2, 27 August 2012. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 27 August 2012 % % Author: % % Pascal Getreuer 2004 % % Parameters: % % Local Parameters: % % COMMENTS, any comments from the file. % % ELEMENTCOUNT, the number of each type of element in file. % % ELEMENTS, the element data. % % PROPERTYTYPES, the element property types. % % SIZEOF, size in bytes of each type. % % % Open the input file in "read text" mode. % [ fid, Msg ] = fopen ( Path, 'rt' ); if ( fid == -1 ) error ( Msg ); end Buf = fscanf ( fid, '%s', 1 ); if ( ~strcmp ( Buf, 'ply' ) ) fclose ( fid ); error('Not a PLY file.'); end % % Read the header. % Position = ftell(fid); Format = ''; NumComments = 0; Comments = {}; NumElements = 0; NumProperties = 0; Elements = []; ElementCount = []; PropertyTypes = []; ElementNames = {}; % list of element names in the order they are stored in the file PropertyNames = []; % structure of lists of property names while ( 1 ) % % Read a line from the file. % Buf = fgetl ( fid ); BufRem = Buf; Token = {}; Count = 0; % % Split the line into tokens. % while ( ~isempty(BufRem) ) [ tmp, BufRem ] = strtok(BufRem); % % Count the tokens. % if ( ~isempty ( tmp ) ) Count = Count + 1; Token{Count} = tmp; end end % % Parse the line. % if ( Count ) switch lower ( Token{1} ) % % Read the data format. % case 'format' if ( 2 <= Count ) Format = lower ( Token{2} ); if ( Count == 3 & ~strcmp ( Token{3}, '1.0' ) ) fclose ( fid ); error('Only PLY format version 1.0 supported.'); end end % % Read a comment. % case 'comment' NumComments = NumComments + 1; Comments{NumComments} = ''; for i = 2 : Count Comments{NumComments} = [Comments{NumComments},Token{i},' ']; end % % Read an element name. % case 'element' if ( 3 <= Count ) if ( isfield(Elements,Token{2}) ) fclose ( fid ); error(['Duplicate element name, ''',Token{2},'''.']); end NumElements = NumElements + 1; NumProperties = 0; Elements = setfield(Elements,Token{2},[]); PropertyTypes = setfield(PropertyTypes,Token{2},[]); ElementNames{NumElements} = Token{2}; PropertyNames = setfield(PropertyNames,Token{2},{}); CurElement = Token{2}; ElementCount(NumElements) = str2double(Token{3}); if ( isnan(ElementCount(NumElements)) ) fclose ( fid ); error(['Bad element definition: ',Buf]); end else error(['Bad element definition: ',Buf]); end % % Read an element property. % case 'property' if ( ~isempty(CurElement) & Count >= 3 ) NumProperties = NumProperties + 1; eval(['tmp=isfield(Elements.',CurElement,',Token{Count});'],... 'fclose(fid);error([''Error reading property: '',Buf])'); if ( tmp ) error(['Duplicate property name, ''',CurElement,'.',Token{2},'''.']); end % % Add property subfield to Elements. % eval(['Elements.',CurElement,'.',Token{Count},'=[];'], ... 'fclose(fid);error([''Error reading property: '',Buf])'); % % Add property subfield to PropertyTypes and save type. % eval(['PropertyTypes.',CurElement,'.',Token{Count},'={Token{2:Count-1}};'], ... 'fclose(fid);error([''Error reading property: '',Buf])'); % % Record property name order. % eval(['PropertyNames.',CurElement,'{NumProperties}=Token{Count};'], ... 'fclose(fid);error([''Error reading property: '',Buf])'); else fclose ( fid ); if ( isempty(CurElement) ) error(['Property definition without element definition: ',Buf]); else error(['Bad property definition: ',Buf]); end end % % End of header. % case 'end_header' break; end end end % % Set reading for specified data format. % if ( isempty ( Format ) ) warning('Data format unspecified, assuming ASCII.'); Format = 'ascii'; end switch Format case 'ascii' Format = 0; case 'binary_little_endian' Format = 1; case 'binary_big_endian' Format = 2; otherwise fclose ( fid ); error(['Data format ''',Format,''' not supported.']); end % % Read the rest of the file as ASCII data... % if ( ~Format ) Buf = fscanf ( fid, '%f' ); BufOff = 1; else % % ...or, close the file, and reopen in "read binary" mode. % fclose ( fid ); % % Reopen the binary file as LITTLE_ENDIAN or BIG_ENDIAN. % if ( Format == 1 ) fid = fopen ( Path, 'r', 'ieee-le.l64' ); else fid = fopen ( Path, 'r', 'ieee-be.l64' ); end % % Find the end of the header again. % Using ftell on the old handle doesn't give the correct position. % BufSize = 8192; Buf = [ blanks(10), char(fread(fid,BufSize,'uchar')') ]; i = []; tmp = -11; while ( isempty(i) ) i = findstr(Buf,['end_header',13,10]); % look for end_header + CR/LF i = [i,findstr(Buf,['end_header',10])]; % look for end_header + LF if ( isempty(i) ) tmp = tmp + BufSize; Buf = [Buf(BufSize+1:BufSize+10),char(fread(fid,BufSize,'uchar')')]; end end % % seek to just after the line feed % fseek ( fid, i + tmp + 11 + (Buf(i + 10) == 13), -1 ); end % % Read element data. % % PLY and MATLAB data types (for fread) % PlyTypeNames = {'char','uchar','short','ushort','int','uint','float','double', ... 'char8','uchar8','short16','ushort16','int32','uint32','float32','double64'}; MatlabTypeNames = {'schar','uchar','int16','uint16','int32','uint32','single','double'}; SizeOf = [1,1,2,2,4,4,4,8]; for i = 1 : NumElements % % get current element property information % eval(['CurPropertyNames=PropertyNames.',ElementNames{i},';']); eval(['CurPropertyTypes=PropertyTypes.',ElementNames{i},';']); NumProperties = size(CurPropertyNames,2); % fprintf('Reading %s...\n',ElementNames{i}); % % Read ASCII data. % if ( ~Format ) for j = 1 : NumProperties Token = getfield(CurPropertyTypes,CurPropertyNames{j}); if ( strcmpi(Token{1},'list') ) Type(j) = 1; else Type(j) = 0; end % % Glenn Ramsey 20120827 % Initialise Type2{} to prevent uninitialised value error. % Type2{j} = ''; end % % Parse the buffer. % if ( ~any(Type) ) % no list types Data = reshape ( ... Buf(BufOff:BufOff+ElementCount(i)*NumProperties-1), ... NumProperties, ElementCount(i) )'; BufOff = BufOff + ElementCount(i) * NumProperties; else ListData = cell(NumProperties,1); for k = 1 : NumProperties ListData{k} = cell(ElementCount(i),1); end % % list type % for j = 1 : ElementCount(i) for k = 1 : NumProperties if ( ~Type(k) ) Data(j,k) = Buf(BufOff); BufOff = BufOff + 1; else tmp = Buf(BufOff); ListData{k}{j} = Buf(BufOff+(1:tmp))'; BufOff = BufOff + tmp + 1; end end end end % % Read binary data. % else % translate PLY data type names to MATLAB data type names ListFlag = 0; % = 1 if there is a list type SameFlag = 1; % = 1 if all types are the same for j = 1 : NumProperties Token = getfield(CurPropertyTypes,CurPropertyNames{j}); % % Non-list type. % if ( ~strcmp(Token{1},'list' ) ) tmp = rem(strmatch(Token{1},PlyTypeNames,'exact')-1,8)+1; if ( ~isempty(tmp) ) TypeSize(j) = SizeOf(tmp); Type{j} = MatlabTypeNames{tmp}; TypeSize2(j) = 0; Type2{j} = ''; SameFlag = SameFlag & strcmp(Type{1},Type{j}); else fclose(fid); error(['Unknown property data type, ''',Token{1},''', in ', ... ElementNames{i},'.',CurPropertyNames{j},'.']); end else % list type if ( length(Token) == 3 ) ListFlag = 1; SameFlag = 0; tmp = rem(strmatch(Token{2},PlyTypeNames,'exact')-1,8)+1; tmp2 = rem(strmatch(Token{3},PlyTypeNames,'exact')-1,8)+1; if ( ~isempty(tmp) & ~isempty(tmp2) ) TypeSize(j) = SizeOf(tmp); Type{j} = MatlabTypeNames{tmp}; TypeSize2(j) = SizeOf(tmp2); Type2{j} = MatlabTypeNames{tmp2}; else fclose(fid); error(['Unknown property data type, ''list ',Token{2},' ',Token{3},''', in ', ... ElementNames{i},'.',CurPropertyNames{j},'.']); end else fclose(fid); error(['Invalid list syntax in ',ElementNames{i},'.',CurPropertyNames{j},'.']); end end end % read file if ( ~ListFlag ) % % No list types, all the same type (fast) % if ( SameFlag ) Data = fread(fid,[NumProperties,ElementCount(i)],Type{1})'; % % No list types, mixed type. % else Data = zeros(ElementCount(i),NumProperties); for j = 1 : ElementCount(i) for k = 1 : NumProperties Data(j,k) = fread(fid,1,Type{k}); end end end else ListData = cell(NumProperties,1); for k = 1 : NumProperties ListData{k} = cell(ElementCount(i),1); end if ( NumProperties == 1 ) BufSize = 512; SkipNum = 4; j = 0; % % List type, one property (fast if lists are usually the same length) % while ( j < ElementCount(i) ) BufSize = min(ElementCount(i)-j,BufSize); Position = ftell(fid); % % Read in BufSize count values, assuming all counts = SkipNum % [Buf,BufSize] = fread(fid,BufSize,Type{1},SkipNum*TypeSize2(1)); Miss = find(Buf ~= SkipNum); % find first count that is not SkipNum fseek(fid,Position + TypeSize(1),-1); % seek back to after first count if ( isempty(Miss) ) % all counts are SkipNum Buf = fread(fid,[SkipNum,BufSize],[int2str(SkipNum),'*',Type2{1}],TypeSize(1))'; fseek(fid,-TypeSize(1),0); % undo last skip for k = 1:BufSize ListData{1}{j+k} = Buf(k,:); end j = j + BufSize; BufSize = floor(1.5*BufSize); else % % Some counts are SkipNum. % if ( 1 < Miss(1) ) Buf2 = fread(fid,[SkipNum,Miss(1)-1],[int2str(SkipNum),'*',Type2{1}],TypeSize(1))'; for k = 1:Miss(1)-1 ListData{1}{j+k} = Buf2(k,:); end j = j + k; end % % Read in the list with the missed count. % SkipNum = Buf(Miss(1)); j = j + 1; ListData{1}{j} = fread(fid,[1,SkipNum],Type2{1}); BufSize = ceil(0.6*BufSize); end end else % % List type(s), multiple properties (slow) % Data = zeros(ElementCount(i),NumProperties); for j = 1:ElementCount(i) for k = 1:NumProperties if ( isempty(Type2{k}) ) Data(j,k) = fread(fid,1,Type{k}); else tmp = fread(fid,1,Type{k}); ListData{k}{j} = fread(fid,[1,tmp],Type2{k}); end end end end end end % % Put data into Elements structure % if iscell(Type) TypeTest = false(size(Type)); else TypeTest = Type; end for k = 1 : NumProperties if ( ~exist('ListData','var') || ( ~Format & ~TypeTest(k) ) || (Format & isempty(Type2{k})) ) eval(['Elements.',ElementNames{i},'.',CurPropertyNames{k},'=Data(:,k);']); else eval(['Elements.',ElementNames{i},'.',CurPropertyNames{k},'=ListData{k};']); end end end clear Data clear ListData; fclose ( fid ); % % Output the data as a triangular mesh pair. % if ( ( nargin > 1 && strcmpi(Str,'Tri') ) || nargout > 2 ) % % Find vertex element field % Name = {'vertex','Vertex','point','Point','pts','Pts'}; Names = []; for i = 1 : length(Name) if ( any ( strcmp ( ElementNames, Name{i} ) ) ) Names = getfield(PropertyNames,Name{i}); Name = Name{i}; break; end end if ( any(strcmp(Names,'x')) & any(strcmp(Names,'y')) & any(strcmp(Names,'z')) ) eval(['varargout{1}=[Elements.',Name,'.x,Elements.',Name,'.y,Elements.',Name,'.z];']); else varargout{1} = zeros(1,3); end varargout{1} = varargout{1}'; varargout{2} = Elements; varargout{3} = Comments; Elements = []; % % Find face element field % Name = {'face','Face','poly','Poly','tri','Tri'}; Names = []; for i = 1 : length(Name) if ( any(strcmp(ElementNames,Name{i})) ) Names = getfield(PropertyNames,Name{i}); Name = Name{i}; break; end end if ( ~isempty(Names) ) % find vertex indices property subfield PropertyName = {'vertex_indices','vertex_indexes','vertex_index','indices','indexes'}; for i = 1 : length(PropertyName) if ( any(strcmp(Names,PropertyName{i})) ) PropertyName = PropertyName{i}; break; end end % % Convert face index list to triangular connectivity. % if ( ~iscell(PropertyName) ) eval(['FaceIndices=varargout{2}.',Name,'.',PropertyName,';']); N = length(FaceIndices); Elements = zeros(3,N*2); Extra = 0; for k = 1 : N Elements(1:3,k) = FaceIndices{k}(1:3)'; % % The original code had an error in the following loop. % for j = 4 : length(FaceIndices{k}) Extra = Extra + 1; Elements(1,N + Extra) = FaceIndices{k}(1); Elements(2,N + Extra) = FaceIndices{k}(j-1); Elements(3,N + Extra) = FaceIndices{k}(j); end end % % Add 1 to each vertex value; PLY vertices are zero based. % Elements = Elements(:,1:N+Extra) + 1; end end else varargout{1} = Comments; end return end